• 学院内网
搜索
返回主站
English
  • 学院概况
    • 概览
    • 学科方向
    • 院长致辞
    • 学院刊物
      • 宣传手册
      • 季度简报
      • 年报
    • 常见问题
    • 联系我们
  • 项目设置
    • 简介
    • 本科生
      • 数据科学与大数据技术
      • 统计学
      • 计算机科学与技术
      • 金融工程
      • 2+2双主修
        • 跨学科数据分析 + X 双主修课程
        • 航天科学与地球信息学 + X 双主修课程
      • 哥大3+2直硕项目
    • 硕士研究生
      • 数据科学理学硕士
      • 金融工程理学硕士(全日/兼读制)
      • 人工智能与机器人理学硕士
      • 计算机科学理学硕士
      • 统计学理学硕士
      • 生物信息学理学硕士
    • 博士研究生(哲学硕士)
      • 数据科学哲学硕士-博士
      • 计算机科学哲学硕士-博士
  • 师资力量
    • 教职人员
    • 荣休教授
    • 兼职人员
    • 科研/访问人员
    • “数说名师”教授访谈
  • SDS学生
    • 博士生
    • 学生访谈
  • 新闻与公示
    • 新闻
    • 公示
  • 学院活动
    • 学术会议
      • ICSR+InnoBiz 2024
      • CSAMSE 2023
      • RMTA 2023
      • ICASSP 2022
      • Mostly OM 2019
    • 学术活动
      • 活动预告
      • 活动报名
      • 活动回顾
    • 数据科学名家讲坛
      • 活动预告
      • 活动报名
      • 活动回顾
    • 其他活动
      • 活动回顾
      • 活动报名
      • 活动预告
  • 学术科研
  • 人才招聘
    • 教职人员
    • 博士后
  • 职业发展
    • 升学就业
    • 国际交流
  • 学院概况
    • 概览
    • 学科方向
    • 院长致辞
    • 学院刊物
      • 宣传手册
      • 季度简报
      • 年报
    • 常见问题
    • 联系我们
  • 项目设置
    • 简介
    • 本科生
      • 数据科学与大数据技术
      • 统计学
      • 计算机科学与技术
      • 金融工程
      • 2+2双主修
        • 跨学科数据分析 + X 双主修课程
        • 航天科学与地球信息学 + X 双主修课程
      • 哥大3+2直硕项目
    • 硕士研究生
      • 数据科学理学硕士
      • 金融工程理学硕士(全日/兼读制)
      • 人工智能与机器人理学硕士
      • 计算机科学理学硕士
      • 统计学理学硕士
      • 生物信息学理学硕士
    • 博士研究生(哲学硕士)
      • 数据科学哲学硕士-博士
      • 计算机科学哲学硕士-博士
  • 师资力量
    • 教职人员
    • 荣休教授
    • 兼职人员
    • 科研/访问人员
    • “数说名师”教授访谈
  • SDS学生
    • 博士生
    • 学生访谈
  • 新闻与公示
    • 新闻
    • 公示
  • 学院活动
    • 学术会议
      • ICSR+InnoBiz 2024
      • CSAMSE 2023
      • RMTA 2023
      • ICASSP 2022
      • Mostly OM 2019
    • 学术活动
      • 活动预告
      • 活动报名
      • 活动回顾
    • 数据科学名家讲坛
      • 活动预告
      • 活动报名
      • 活动回顾
    • 其他活动
      • 活动回顾
      • 活动报名
      • 活动预告
  • 学术科研
  • 人才招聘
    • 教职人员
    • 博士后
  • 职业发展
    • 升学就业
    • 国际交流
  • 学院内网
返回主站
English

面包屑

  • 首页
  • 学院活动
  • 数据科学名家讲坛
  • 【数据科学名家讲坛】Learning for Networks: Tackling Switching Costs and Decomposition (Xiaojun LIN, Professor and Global STEM Scholar, The Chinese University of Hong Kong)

【数据科学名家讲坛】Learning for Networks: Tackling Switching Costs and Decomposition (Xiaojun LIN, Professor and Global STEM Scholar, The Chinese University of Hong Kong)

2023-11-24 数据科学名家讲坛

主题:Learning for Networks: Tackling Switching Costs and Decomposition

报告人:Xiaojun LIN, Professor and Global STEM Scholar, The Chinese University of Hong Kong

主持人:Konstantinos COURCOUBETIS, Presidential Chair Professor, School of Data Science, CUHK-Shenzhen

日期:24 November (Friday), 2023

时间:11:00 AM - 12:00 PM, Beijing Time

形式:Hybrid

地点:103 Meeting Room, Daoyuan Building

SDS视频号直播:

语言:English

摘要:

There is increasing interest in applying learning methods to networks, both to uncover the inherent unknowns in the system (through online bandit learning) and to tackle complex stochastic decision problems (through reinforcement learning). However, due to the unique network environment, directly using standard learning methods is often inadequate. For one, exploring options/arms across a communication network often involves significant overhead. The corresponding switching cost can significantly degrade the regret of bandit learning. For another, reinforcement learning methods treating the whole system as a large-scale MDP (Markov Decision Process) overlook the decentralized nature of network operation. As a result, the learned policy is often difficult to interpret and adapt slowly to changes. Thus, we argue that there is a significant need to revisit and improve learning methods for networks, possibly by borrowing ideas from network theory.

Specifically, I will talk about two of our recent studies in this direction. In the first work, motivated by the need to select ML (machine learning) models at a capacity-constrained edge server, we study online bandit learning with switching costs. We show a surprising “power-of-2-arms” effect, i.e., by having access to the feedback of two ML models at a time, our proposed learning algorithm can reduce the regret from O(T2/3) to O(T1/2). In the second work, motivated by stochastic decision problems for minimizing the age-of-information over multi-channel wireless networks, we propose a new concept of partial index that significantly extends the traditional Whittle index, which can be used to decompose the associated large-scale MDP and to produce scalable, easy-to-interpret, and adaptive solutions.

简介:

Xiaojun Lin received his B.S. from Zhongshan University, Guangzhou, China, in 1994, and his M.S. and Ph.D. degrees from Purdue University, West Lafayette, Indiana, in 2000 and 2005, respectively. He joined the faculty of School of Electrical and Computer Engineering at Purdue University in 2005, and became a Professor in 2017. Since June 2023, he joined the Department of Information Engineering, The Chinese University of Hong Kong, as a Professor and Global STEM Scholar. Dr. Lin's research interests are in the analysis, control and learning of large and complex networked systems, including both communication networks and cyber-physical systems. He received 2005 best paper of the year award from Journal of Communications and Networks, IEEE INFOCOM 2008 best paper award, ACM MobiHoc 2021 best paper award, and ACM e-Energy 2022 best paper award. He received the NSF CAREER award in 2007. He has served as an Associate Editor for IEEE/ACM Transactions on Networking, as an Area Editor for (Elsevier) Computer Networks journal, and as a Guest Editor for (Elsevier) Ad Hoc Networks journal. Dr. Lin is a Fellow of IEEE.

地址: 广东省深圳市龙岗区龙翔大道2001号道远楼3-6楼
邮箱: sds@cuhk.edu.cn
微信公众号: cuhksz-sds

sds.cuhk.edu.cn

版权所有 © 香港中文大学(深圳)数据科学学院