• 学院内网
搜索
返回主站
English
  • 学院概况
    • 概览
    • 学科方向
    • 院长致辞
    • 学院刊物
      • 宣传手册
      • 季度简报
      • 年报
    • 常见问题
    • 联系我们
  • 项目设置
    • 简介
    • 本科生
      • 数据科学与大数据技术
      • 统计学
      • 计算机科学与技术
      • 金融工程
      • 2+2双主修
        • 跨学科数据分析 + X 双主修课程
        • 航天科学与地球信息学 + X 双主修课程
      • 哥大3+2直硕项目
    • 硕士研究生
      • 数据科学理学硕士
      • 金融工程理学硕士(全日/兼读制)
      • 人工智能与机器人理学硕士
      • 计算机科学理学硕士
      • 统计学理学硕士
      • 生物信息学理学硕士
    • 博士研究生(哲学硕士)
      • 数据科学哲学硕士-博士
      • 计算机科学哲学硕士-博士
  • 师资力量
    • 教职人员
    • 荣休教授
    • 兼职人员
    • 科研/访问人员
    • “数说名师”教授访谈
  • SDS学生
    • 博士生
    • 学生访谈
  • 新闻与公示
    • 新闻
    • 公示
  • 学院活动
    • 学术会议
      • ICSR+InnoBiz 2024
      • CSAMSE 2023
      • RMTA 2023
      • ICASSP 2022
      • Mostly OM 2019
    • 学术活动
      • 活动预告
      • 活动报名
      • 活动回顾
    • 数据科学名家讲坛
      • 活动预告
      • 活动报名
      • 活动回顾
    • 其他活动
      • 活动回顾
      • 活动报名
      • 活动预告
  • 学术科研
  • 人才招聘
    • 教职人员
    • 博士后
  • 职业发展
    • 升学就业
    • 国际交流
  • 学院概况
    • 概览
    • 学科方向
    • 院长致辞
    • 学院刊物
      • 宣传手册
      • 季度简报
      • 年报
    • 常见问题
    • 联系我们
  • 项目设置
    • 简介
    • 本科生
      • 数据科学与大数据技术
      • 统计学
      • 计算机科学与技术
      • 金融工程
      • 2+2双主修
        • 跨学科数据分析 + X 双主修课程
        • 航天科学与地球信息学 + X 双主修课程
      • 哥大3+2直硕项目
    • 硕士研究生
      • 数据科学理学硕士
      • 金融工程理学硕士(全日/兼读制)
      • 人工智能与机器人理学硕士
      • 计算机科学理学硕士
      • 统计学理学硕士
      • 生物信息学理学硕士
    • 博士研究生(哲学硕士)
      • 数据科学哲学硕士-博士
      • 计算机科学哲学硕士-博士
  • 师资力量
    • 教职人员
    • 荣休教授
    • 兼职人员
    • 科研/访问人员
    • “数说名师”教授访谈
  • SDS学生
    • 博士生
    • 学生访谈
  • 新闻与公示
    • 新闻
    • 公示
  • 学院活动
    • 学术会议
      • ICSR+InnoBiz 2024
      • CSAMSE 2023
      • RMTA 2023
      • ICASSP 2022
      • Mostly OM 2019
    • 学术活动
      • 活动预告
      • 活动报名
      • 活动回顾
    • 数据科学名家讲坛
      • 活动预告
      • 活动报名
      • 活动回顾
    • 其他活动
      • 活动回顾
      • 活动报名
      • 活动预告
  • 学术科研
  • 人才招聘
    • 教职人员
    • 博士后
  • 职业发展
    • 升学就业
    • 国际交流
  • 学院内网
返回主站
English

面包屑

  • 首页
  • 学院活动
  • 数据科学名家讲坛
  • 【数据科学名家讲坛】The Increasing Role of Sensorimotor Experience in Artificial Intelligence

【数据科学名家讲坛】The Increasing Role of Sensorimotor Experience in Artificial Intelligence

2024-12-26 数据科学名家讲坛

SDS Colloquium Series

TopicThe Increasing Role of Sensorimotor Experience in Artificial Intelligence
SpeakerRichard S. SUTTON, Professor, Department of Computing Science, University of Alberta
HostChenjun XIAO, Assistant Professor, School of Data Science, CUHK-Shenzhen
Date26 December (Thursday), 2024
Time3:00 PM - 4:00 PM, Beijing Time
FormatOnsite
VenueRoom 101, Teaching Complex C
LanguageEnglish

Abstract

We receive information about the world through our sensors and influence the world through our effectors. Such low-level experiential data has gradually come to play a greater role in AI during its 70-year history. I see this as occurring in four steps, two of which are mostly past and two of which are in progress or yet to come. The first step was to view AI as the design of agents which interact with the world and thereby have sensorimotor experience; this viewpoint became prominent in the 1990s. The second step was to view the goal of intelligence in terms of experience, as in the reward signal of optimal control and reinforcement learning. The reward formulation of goals is now widely used but rarely loved. Many would prefer to express goals in non-experiential terms, such as reaching a destination or benefiting humanity, but settle for reward because, as an experiential signal, reward is directly available to the agent without human assistance or interpretation. This is the pattern that we see in all four steps. Initially a non-experiential approach seems more intuitive, is preferred and tried, but ultimately proves a limitation on scaling; the experiential approach is more suited to learning and scaling with computational resources. The third step in the increasing role of experience in AI concerns the agent’s representation of the world’s state. Classically, the state of the world is represented in objective terms external to the agent, such as “the grass is wet” and “the car is ten meters in front of me”, or with probability distributions over world states such as in POMDPs and other Bayesian approaches. Alternatively, the state of the world can be represented experientially in terms of summaries of past experience (e.g., the last four Atari video frames input to DQN) or predictions of future experience (e.g., successor representations). The fourth step is potentially the biggest: world knowledge. Classically, world knowledge has always been expressed in terms far from experience, and this has limited its ability to be learned and maintained. Today we are seeing more calls for knowledge to be predictive and grounded in experience. If completed, the four steps might enable substantial new progress in AI.

Biography

Richard S. Sutton is a professor in the Department of Computing Science at the University of Alberta, a Canadian AI Chair, and a fellow of the Royal Society of London, the Royal Society of Canada, the Association for the Advancement of Artificial Intelligence, the Alberta Machine Intelligence Institute (Amii), and CIFAR. He is also a Research Scientist at Keen Technologies and the Founder of the Openmind Research Institute. He received a PhD in computer science from the University of Massachusetts in 1984 and a BA in psychology from Stanford University in 1978.

 

Prior to joining the University of Alberta in 2003, he worked in industry at AT&T Labs and GTE Labs, and in academia at the University of Massachusetts. At the University of Alberta, Sutton founded the Reinforcement Learning and Artificial Intelligence Lab. From 2017-2023 he founded and worked at DeepMind Alberta in Edmonton. Sutton’s research interests center on the learning problems facing a decision-making agent interacting with its environment, which he sees as central to intelligence. He has additional interests in animal learning psychology, in connectionist networks, and generally in systems that continually improve their representations and models of the world. He is co-author of the textbook Reinforcement Learning: An Introduction. His scientific publications have been cited more than 150,000 times. He is also a libertarian, a chess player, and a cancer survivor.

地址: 广东省深圳市龙岗区龙翔大道2001号道远楼3-6楼
邮箱: sds@cuhk.edu.cn
微信公众号: cuhksz-sds

sds.cuhk.edu.cn

版权所有 © 香港中文大学(深圳)数据科学学院