• 学院内网
搜索
返回主站
English
  • 学院概况
    • 概览
    • 学科方向
    • 院长致辞
    • 学院刊物
      • 宣传手册
      • 季度简报
      • 年报
    • 常见问题
    • 联系我们
  • 项目设置
    • 简介
    • 本科生
      • 数据科学与大数据技术
      • 统计学
      • 计算机科学与技术
      • 金融工程
      • 2+2双主修
        • 跨学科数据分析 + X 双主修课程
        • 航天科学与地球信息学 + X 双主修课程
      • 哥伦比亚大学工程学院3+2直硕项目(哥大班)
    • 硕士研究生
      • 数据科学理学硕士
      • 金融工程理学硕士(全日/兼读制)
      • 人工智能与机器人理学硕士
      • 计算机科学理学硕士
      • 统计学理学硕士
      • 生物信息学理学硕士
    • 博士研究生(哲学硕士)
      • 数据科学哲学硕士-博士
      • 计算机科学哲学硕士-博士
  • 师资力量
    • 教职人员
    • 荣休教授
    • 兼职人员
    • 科研/访问人员
    • “数说名师”教授访谈
  • SDS学生
    • 本科生学业咨询系统
    • 博士生
    • 学生访谈
  • 新闻与公示
    • 新闻
    • 公示
  • 学院活动
    • 学术会议
      • DDTOR 2025
      • CSAMSE 2023
      • RMTA 2023
      • ICASSP 2022
      • Mostly OM 2019
    • 学术活动
    • 数据科学名家讲坛
    • 其他活动
  • 学术科研
  • 人才招聘
    • 教职人员
    • 博士后
  • 职业发展
    • 升学就业
    • 国际交流
  • 学院概况
    • 概览
    • 学科方向
    • 院长致辞
    • 学院刊物
      • 宣传手册
      • 季度简报
      • 年报
    • 常见问题
    • 联系我们
  • 项目设置
    • 简介
    • 本科生
      • 数据科学与大数据技术
      • 统计学
      • 计算机科学与技术
      • 金融工程
      • 2+2双主修
        • 跨学科数据分析 + X 双主修课程
        • 航天科学与地球信息学 + X 双主修课程
      • 哥伦比亚大学工程学院3+2直硕项目(哥大班)
    • 硕士研究生
      • 数据科学理学硕士
      • 金融工程理学硕士(全日/兼读制)
      • 人工智能与机器人理学硕士
      • 计算机科学理学硕士
      • 统计学理学硕士
      • 生物信息学理学硕士
    • 博士研究生(哲学硕士)
      • 数据科学哲学硕士-博士
      • 计算机科学哲学硕士-博士
  • 师资力量
    • 教职人员
    • 荣休教授
    • 兼职人员
    • 科研/访问人员
    • “数说名师”教授访谈
  • SDS学生
    • 本科生学业咨询系统
    • 博士生
    • 学生访谈
  • 新闻与公示
    • 新闻
    • 公示
  • 学院活动
    • 学术会议
      • DDTOR 2025
      • CSAMSE 2023
      • RMTA 2023
      • ICASSP 2022
      • Mostly OM 2019
    • 学术活动
    • 数据科学名家讲坛
    • 其他活动
  • 学术科研
  • 人才招聘
    • 教职人员
    • 博士后
  • 职业发展
    • 升学就业
    • 国际交流
  • 学院内网
返回主站
English

面包屑

  • 首页
  • 学院活动
  • 数据科学名家讲坛
  • 【数据科学名家讲坛】Diversified Bayesian Learning: Optimal Control with Multiple Biased Information Sources

【数据科学名家讲坛】Diversified Bayesian Learning: Optimal Control with Multiple Biased Information Sources

2025-11-10 数据科学名家讲坛

SDS Colloquium Series

TopicDiversified Bayesian Learning: Optimal Control with Multiple Biased Information Sources
Speaker

Jussi KEPPO, Provost's Chair Professor and Head, Department of Analytics & Operations, NUS Business School

Research Director, Institute of Operations Research and Analytics, National University of Singapore

HostZizhuo WANG, Professor & Associate Dean (Education), School of Data Science, CUHK-Shenzhen
Date10 November (Monday), 2025
Time11:00 AM - 12:00 PM, Beijing Time
FormatHybrid
VenueRoom 401, Dao Yuan Building
Live on WeChat Channelscid:image001.jpg@01DC48F8.5AE21ED0
LanguageEnglish

Abstract

We consider a decision-maker (DM) who can acquire signals from multiple biased information sources to learn about a hidden state before making an earning decision. Unbiased signals are also available but come at a higher acquisition cost. The DM jointly optimizes both learning (information acquisition) and earning decisions to minimize expected loss. This problem is motivated by applications such as medical diagnostics, revenue management and financial investments, where decisions often rely on multiple biased information sources. In contrast to existing literature that primarily focuses on stopping problems with unbiased information, we develop a Bayesian decision framework that accommodates general earning decisions, and models multi-source learning using a hierarchical Bayesian network, explicitly capturing intrinsic biases. We fully solve the model and explicitly characterize the optimal acquisition policy: For small budgets, cost-effectiveness dominates, prioritizing cheap biased sources. As budgets grow, diversification across all biased sources becomes optimal as it mitigates risks from biases. With large budgets, acquisition shifts to costly unbiased sources as biased signals offer diminishing value due to their limited accuracy. We also illustrate the model through two use cases: a disease nowcasting example using real data that shows how budget allocation shifts with bias, cost, and precision, and a demand forecasting example that demonstrates the performance advantage of the proposed policy (learning algorithm) over benchmarks in simulation.

Biography

Professor Jussi Keppo teaches risk management and analytics courses, and directs analytics executive education programs at NUS Business School. He is also the Head of the Department of Analytics & Operations at NUS Business School and Research Director of the Institute of Operations Research and Analytics at NUS. Previously, he taught at the University of Michigan. He has several publications in the top-tier journals such as Journal of Economic Theory, Review of Economic Studies, Management Science, Operations Research, and Journal of Business on topics such as investment analysis, banking regulation, learning, and strategic incentives. His research has been featured also in numerous business and popular publications, including the Wall Street Journal and Fortune. Professor Keppo’s research has been supported by several Asian, European, and US agencies such as the National Science Foundation. He serves on the editorial boards of Management Science, Operations Research, and Journal of Risk. He has consulted several startups, Fortune 100 companies, and financial institutions.

地址: 广东省深圳市龙岗区龙翔大道2001号道远楼3-6楼
邮箱: sds@cuhk.edu.cn
微信公众号: cuhksz-sds

sds.cuhk.edu.cn

版权所有 © 香港中文大学(深圳)数据科学学院