• 学院内网
搜索
返回主站
English
  • 学院概况
    • 概览
    • 学科方向
    • 院长致辞
    • 学院刊物
      • 宣传手册
      • 季度简报
      • 年报
    • 常见问题
    • 联系我们
  • 项目设置
    • 简介
    • 本科生
      • 数据科学与大数据技术
      • 统计学
      • 计算机科学与技术
      • 金融工程
      • 2+2双主修
        • 跨学科数据分析 + X 双主修课程
        • 航天科学与地球信息学 + X 双主修课程
      • 哥大3+2直硕项目
    • 硕士研究生
      • 数据科学理学硕士
      • 金融工程理学硕士(全日/兼读制)
      • 人工智能与机器人理学硕士
      • 计算机科学理学硕士
      • 统计学理学硕士
      • 生物信息学理学硕士
    • 博士研究生(哲学硕士)
      • 数据科学哲学硕士-博士
      • 计算机科学哲学硕士-博士
  • 师资力量
    • 教职人员
    • 荣休教授
    • 兼职人员
    • 科研/访问人员
    • “数说名师”教授访谈
  • SDS学生
    • 博士生
    • 学生访谈
  • 新闻与公示
    • 新闻
    • 公示
  • 学院活动
    • 学术会议
      • ICSR+InnoBiz 2024
      • CSAMSE 2023
      • RMTA 2023
      • ICASSP 2022
      • Mostly OM 2019
    • 学术活动
      • 活动预告
      • 活动报名
      • 活动回顾
    • 数据科学名家讲坛
      • 活动预告
      • 活动报名
      • 活动回顾
    • 其他活动
      • 活动回顾
      • 活动报名
      • 活动预告
  • 学术科研
  • 人才招聘
    • 教职人员
    • 博士后
  • 职业发展
    • 升学就业
    • 国际交流
  • 学院概况
    • 概览
    • 学科方向
    • 院长致辞
    • 学院刊物
      • 宣传手册
      • 季度简报
      • 年报
    • 常见问题
    • 联系我们
  • 项目设置
    • 简介
    • 本科生
      • 数据科学与大数据技术
      • 统计学
      • 计算机科学与技术
      • 金融工程
      • 2+2双主修
        • 跨学科数据分析 + X 双主修课程
        • 航天科学与地球信息学 + X 双主修课程
      • 哥大3+2直硕项目
    • 硕士研究生
      • 数据科学理学硕士
      • 金融工程理学硕士(全日/兼读制)
      • 人工智能与机器人理学硕士
      • 计算机科学理学硕士
      • 统计学理学硕士
      • 生物信息学理学硕士
    • 博士研究生(哲学硕士)
      • 数据科学哲学硕士-博士
      • 计算机科学哲学硕士-博士
  • 师资力量
    • 教职人员
    • 荣休教授
    • 兼职人员
    • 科研/访问人员
    • “数说名师”教授访谈
  • SDS学生
    • 博士生
    • 学生访谈
  • 新闻与公示
    • 新闻
    • 公示
  • 学院活动
    • 学术会议
      • ICSR+InnoBiz 2024
      • CSAMSE 2023
      • RMTA 2023
      • ICASSP 2022
      • Mostly OM 2019
    • 学术活动
      • 活动预告
      • 活动报名
      • 活动回顾
    • 数据科学名家讲坛
      • 活动预告
      • 活动报名
      • 活动回顾
    • 其他活动
      • 活动回顾
      • 活动报名
      • 活动预告
  • 学术科研
  • 人才招聘
    • 教职人员
    • 博士后
  • 职业发展
    • 升学就业
    • 国际交流
  • 学院内网
返回主站
English

面包屑

  • 首页
  • 学院活动
  • 学术活动
  • Nonparametric Learning and Optimization with Covariates

Nonparametric Learning and Optimization with Covariates

2018-08-07 学术活动

 

  • Title: Nonparametric Learning and Optimization with Covariates
  • Speaker: Prof. Ningyuan CHEN
  • Time: 14:00-15:00, Tuesday, August 07, 2018
  • Venue: Boardroom, Dao Yuan Building

 

 

Abstract:

 

Modern decision analytics frequently involves the optimization of an objective over a finite horizon where the functional form of the objective is unknown.  The decision analyst observes covariates and tries to learn and optimize the objective by experimenting with the decision variables. We present a nonparametric learning and optimization policy with covariates.  The policy is based on adaptively splitting the covariate space into smaller bins (hyper-rectangles) and learning the optimal decision in each bin. We show that the algorithm achieves a regret of order $O(\log(T)^2 T^{(2+d)/(4+d)})$, where $T$ is the length of the horizon and $d$ is the dimension of the covariates, and show that no policy can achieve a regret less than $O(T^{(2+d)/(4+d)})$ and thus demonstrate the near optimality of the proposed policy. The role of $d$ in the regret is not seen in parametric learning problems: It highlights the complex interaction between the nonparametric formulation and the covariate dimension. It also suggests the decision analyst should incorporate contextual information selectively.

Biography:

Dr. Ningyuan Chen is currently an assistant professor at the Department of Industrial Engineering and Decision Analytics of the Hong Kong University of Science and Technology. He received his Ph.D. from the Department of Industrial Engineering and Operations Research at Columbia University. He was a postdoctoral associate at Yale School of Management from 2015 to 2016. His research interest includes revenue management, statistics, applied probability and networks.

地址: 广东省深圳市龙岗区龙翔大道2001号道远楼3-6楼
邮箱: sds@cuhk.edu.cn
微信公众号: cuhksz-sds

sds.cuhk.edu.cn

版权所有 © 香港中文大学(深圳)数据科学学院