• 学院内网
搜索
返回主站
English
  • 学院概况
    • 概览
    • 学科方向
    • 院长致辞
    • 学院刊物
      • 宣传手册
      • 季度简报
      • 年报
    • 常见问题
    • 联系我们
  • 项目设置
    • 简介
    • 本科生
      • 数据科学与大数据技术
      • 统计学
      • 计算机科学与技术
      • 金融工程
      • 2+2双主修
        • 跨学科数据分析 + X 双主修课程
        • 航天科学与地球信息学 + X 双主修课程
      • 哥大3+2直硕项目
    • 硕士研究生
      • 数据科学理学硕士
      • 金融工程理学硕士(全日/兼读制)
      • 人工智能与机器人理学硕士
      • 计算机科学理学硕士
      • 统计学理学硕士
      • 生物信息学理学硕士
    • 博士研究生(哲学硕士)
      • 数据科学哲学硕士-博士
      • 计算机科学哲学硕士-博士
  • 师资力量
    • 教职人员
    • 荣休教授
    • 兼职人员
    • 科研/访问人员
    • “数说名师”教授访谈
  • SDS学生
    • 博士生
    • 学生访谈
  • 新闻与公示
    • 新闻
    • 公示
  • 学院活动
    • 学术会议
      • ICSR+InnoBiz 2024
      • CSAMSE 2023
      • RMTA 2023
      • ICASSP 2022
      • Mostly OM 2019
    • 学术活动
      • 活动预告
      • 活动报名
      • 活动回顾
    • 数据科学名家讲坛
      • 活动预告
      • 活动报名
      • 活动回顾
    • 其他活动
      • 活动回顾
      • 活动报名
      • 活动预告
  • 学术科研
  • 人才招聘
    • 教职人员
    • 博士后
  • 职业发展
    • 升学就业
    • 国际交流
  • 学院概况
    • 概览
    • 学科方向
    • 院长致辞
    • 学院刊物
      • 宣传手册
      • 季度简报
      • 年报
    • 常见问题
    • 联系我们
  • 项目设置
    • 简介
    • 本科生
      • 数据科学与大数据技术
      • 统计学
      • 计算机科学与技术
      • 金融工程
      • 2+2双主修
        • 跨学科数据分析 + X 双主修课程
        • 航天科学与地球信息学 + X 双主修课程
      • 哥大3+2直硕项目
    • 硕士研究生
      • 数据科学理学硕士
      • 金融工程理学硕士(全日/兼读制)
      • 人工智能与机器人理学硕士
      • 计算机科学理学硕士
      • 统计学理学硕士
      • 生物信息学理学硕士
    • 博士研究生(哲学硕士)
      • 数据科学哲学硕士-博士
      • 计算机科学哲学硕士-博士
  • 师资力量
    • 教职人员
    • 荣休教授
    • 兼职人员
    • 科研/访问人员
    • “数说名师”教授访谈
  • SDS学生
    • 博士生
    • 学生访谈
  • 新闻与公示
    • 新闻
    • 公示
  • 学院活动
    • 学术会议
      • ICSR+InnoBiz 2024
      • CSAMSE 2023
      • RMTA 2023
      • ICASSP 2022
      • Mostly OM 2019
    • 学术活动
      • 活动预告
      • 活动报名
      • 活动回顾
    • 数据科学名家讲坛
      • 活动预告
      • 活动报名
      • 活动回顾
    • 其他活动
      • 活动回顾
      • 活动报名
      • 活动预告
  • 学术科研
  • 人才招聘
    • 教职人员
    • 博士后
  • 职业发展
    • 升学就业
    • 国际交流
  • 学院内网
返回主站
English

面包屑

  • 首页
  • 学院活动
  • 学术活动
  • Academic Seminar |Nonsmooth Newton methods for large scale convex and nonconvex optimization problems

Academic Seminar |Nonsmooth Newton methods for large scale convex and nonconvex optimization problems

2018-08-22 学术活动

Title:Nonsmooth Newton methods for large scale convex and nonconvex optimization problems

Speaker: Dr. Ying CUI, University of Southern California

Time and Date: 11:00am -12:00pm, August 22, 2018

Venue: Boardroom, Dao Yuan Building

 

Abstract: 

First order methods are widely used nowadays for solving large scale optimization problems. In this talk, I will discuss the possibility and necessity for incorporating second order information in solving difficult optimization problems. One example of such problems is a class of degenerate convex semidefinite programming. Guided by the error bounds theory, we propose a semismooth Newton-CG based augmented Lagrangian method to solve this class of problems with provable fast convergence rate and convincing numerical results. Another emerging area that calls for second order methods comes from modern statistical estimation problems. We will take a class of difference-convex-piecewise regression problems as an example to show how the dual semismooth Newton method can be embedded in the majorization minimization framework and its advantage over various first order subproblem solvers.

 

 

Biography:

 

Ying Cui is currently a postdoc research associate in Department of Industrial and Systems Engineering at University of Southern California, working with Professor Jong-Shi Pang. She received her Ph.D from Department of Mathematics, National University of Singapore in 2016, under the supervisions of Professor Defeng Sun and Professor Chenlei Leng.

地址: 广东省深圳市龙岗区龙翔大道2001号道远楼3-6楼
邮箱: sds@cuhk.edu.cn
微信公众号: cuhksz-sds

sds.cuhk.edu.cn

版权所有 © 香港中文大学(深圳)数据科学学院